Abstraction of Continuous System to Discrete Event System Using Neural Network
نویسندگان
چکیده
ion of Continuous System to Discrete Event System Using Neural Network Sung Hoon Jung* and Tag Gon Kim, *School of Information and Computer Engineering, Hansung Univ., Seoul, Korea tDepartment of Electrical Engineering, KAIST, Taejon 305-701, Korea ABSTRACT A hybrid system consists of continuous systems and discrete event systems, which interact with each other. In such configuration, a continuous system can't directly communicate with a discrete event system. Therefore, a form of interface between two systems is required for possible communication. An interface from a continuous system to a discrete event system requires abstraction of a continuous system as a discrete event system. This paper proposes a methodology for abstraction of a continuous system as a discrete event system using neural network. A continuous system is first represented by a timed state transition model and then the model is mapped into a neural network by learning capability of the network. With a simple example, this paper describes the abstraction process in detail and discusses application methods of the neural network model. Finally, an application of such abstraction in design of intelligent control is discussed.A hybrid system consists of continuous systems and discrete event systems, which interact with each other. In such configuration, a continuous system can't directly communicate with a discrete event system. Therefore, a form of interface between two systems is required for possible communication. An interface from a continuous system to a discrete event system requires abstraction of a continuous system as a discrete event system. This paper proposes a methodology for abstraction of a continuous system as a discrete event system using neural network. A continuous system is first represented by a timed state transition model and then the model is mapped into a neural network by learning capability of the network. With a simple example, this paper describes the abstraction process in detail and discusses application methods of the neural network model. Finally, an application of such abstraction in design of intelligent control is discussed.
منابع مشابه
Real-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm
The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...
متن کاملDetermination of optimum of production rate of network failure prone manufacturing systems with perishable items using discrete event simulation and Taguchi design of experiment
This paper, considers Network Failure Manufacturing System (NFPMS) and production control policy of unreliable multi-machines, multi-products with perishable items. The production control policy is based on the Hedging Point Policy (HPP). The important point in the simulation of this system is assumed that the customers who receive perishable item are placed in priority queue of the customers w...
متن کاملExtracting Dynamics Matrix of Alignment Process for a Gimbaled Inertial Navigation System Using Heuristic Dynamic Programming Method
In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...
متن کاملSIMULATING CONTINUOUS FUZZY SYSTEMS: I
In previous studies we first concentrated on utilizing crisp simulationto produce discrete event fuzzy systems simulations. Then we extendedthis research to the simulation of continuous fuzzy systems models. In this paperwe continue our study of continuous fuzzy systems using crisp continuoussimulation. Consider a crisp continuous system whose evolution depends ondifferential equations. Such a ...
متن کاملNeural Network Modelling of Optimal Robot Movement Using Branch and Bound Tree
In this paper a discrete competitive neural network is introduced to calculate the optimal robot arm movements for processing a considered commitment of tasks, using the branch and bound methodology. A special method based on the branch and bound methodology, modified with a travelling path for adapting in the neural network, is introduced. The main neural network of the system consists of diff...
متن کامل